Future Market Potential of Biogas CHP Plants in the Energy and Agriculture Sectors



A few years ago, biomass was just a minor branch of the energy industry. Noone would have ever considered to invest in pyrolosis plants. Now, a growing number of researchers try to find new ways of how to convert biomass into fuel. Agricultural producers have also gotten much more involved in the energy industry as biogas plants allow farmers to produce their own electricity.  But it doesn’t end there. Brazil has an established sugarcane production and processing industry that accommodates the needs of millions of transportation companies and car drivers. Brazil’s sugarcane industry also makes a substantial contribution to the fuel sector and primary energy consumption. Depending on exact processing techniques it may or may not have good fuel efficiency. 

In Europe we tend towards biogas plants. Biogas plants can serve as energy storage facilities. Something few people in the energy industry often think of is we can upgrade biogas plants to serve as carbon sinks in order to increase fuel output from silage, or to repurpose them as CHP plants.  CHP techniques may be suitable to biogas and biomass plants. They often complement each other, which means we may be able to diversify and create different energy products for different customer segments. 

1. Biogas Plants Convert Maiz Silage Into Biomethane To Generate Electricity

Biogas plants have become commonplace. The way they operate is to turn corn into corn silage in order to produce biomethane. The biomethane is fed into the gas network where it can contribute to fuel independence.

A major concern is corrosion of the distribution network, that is caused by the amount of sulfur present in the gas. This may lead to higher maintenance costs for the network operator. But the very fact that we can actually turn biomass – such as corn – into biomethane I think is a great step forward. This would certainly not have been possible in the past.

2. New Opportunities Open Up Turning Biomass Into Fuel

Biomass-to-fuel can add to the world’s fuel supply. This is even more important at a time when fossil fuel use steadily declines because we are not able to get enough oil out the ground. I have previously alluded to this phenomenon in an article on peak oil.

This means oil producers are looking for alternatives to conventional oil and gas supplies. Basically, there are two ways to turn biomass into fuel.

Some energy companies research new ways to convert plastic into fuel and I added the link below under the references section. The aim is to create fuels that reduce overall CO2 footprint, and at the same time make good use of certain plastic waste fractions that no longer add value as end user products and cannot be reutilized as plastic bottles for example. Only certain types of plastic would be suitable for this.

3. Pyrolsis for Biomass Adjacent to Existing Biogas Plants

Pyrolysis is a good way to convert plastics into fuel. At the same time you are creating a lot of heat that can be used for anaerobic digestion in facilities nearby.  Increasingly engineers become aware of the potential to combine facilities and make use of residual products.

4. Plasma Gasification Adjacent to Existing Biogas Plants

The main advantage of this solutions is to create syngas, which means that you will be able to create hydrogen through this process.

5. References for Further Reading:

American Chemistry Council, Economic Impact of Advanced Plastics Recycling and Recovery Facilities in the U.S., viewed 25 07 2019, https://plastics.americanchemistry.com/Economic-Impact-of-Advanced-Plastics-Recycling-and-Recovery-Facilities-in-the-United-States.pdf.

Dayana S., Sharuddin A., Abnisa F., Wan Mohd Ashri Wan Daud, Kheireddine M. Aroua (2016), A review on pyrolysis of plastic wastes, Energy Conversion and Management 115, 308-326, Available at: https://umexpert.um.edu.my/file/publication/00003263_135374.pdf (Accessed: 25 07 2019)

IEA Bioenergy, Thermal Pre-treatment of Biomass for Large-scale Applications, ExCo66 Workshop [pdf], viewed 25 07 2019, https://www.ieabioenergy.com/wp-content/uploads/2013/10/ExCo66-Thermal-pre-treatment-of-biomass-for-large-scale-applications-summary-and-conclusions1.pdf.

Lerner S. (2019), Waste Only, Available at: https://theintercept.com/2019/07/20/plastics-industry-plastic-recycling (Accessed: 25 07 2019).

ReSource International (2015), Pyrolysis of plastic waste for
fuel production, viewed 25 07 2019, https://orkustofnun.is/gogn/Orkusjodur/Orkusjodur-171-Pyrolysis-of-plastic-waste-for-fuel-production-2014030033.pdf.

The Oxford Institute for Energy Studies, Gas to Liquids: Historical Development and Future Prospects [pdf], viewed 25 07 2019, https://www.oxfordenergy.org/wpcms/wp-content/uploads/2013/12/NG-80.pdf.

Total (n.d.), Committed to the future of Bioenergies, viewed 24 07 2019, https://www.total.com/en/energy-expertise/exploration-production/committed-future-bioenergies.

WireS Authors (2019), Advancing Catalytic Fast Pyrolysis for Conversion of Biomass into Chemicals, viewed, 19 01 2020, https://www.advancedsciencenews.com/advancing-catalytic-fast-pyrolysis/.

Many thanks for the shared interest in the energy world!


This article is just meant to inform the reader of recent developments in the energy industry at large and to share knowledge and insights with a wider audience. The author does not put forth investment recommendations. This article should not be taken as investment advice and the author cannot be held to account for investments made. For more information, please refer to the Legal Disclosure and Privacy Policy, which you can click on or find at the top of this page in the menu bar. 

Contact us!